
Complex Analysis (for Physics)

Resit Exam / Solutions
Exam Date: April 13, 2022 (18:15 – 20:15)

1) Consider the complex function

F (x+ iy) = (x3 + 3xy2 − 3x) + i(y3 + 3x2y − 3y)

a) Determine the point(s) at which F is differentiable.
b) Compute the derivative F ′ at the point(s) where it exists.

Solution. a) We start by identifying the real and imaginary parts of the function, i.e.

u(x, y) = ReF (z) = x3 + 3xy2 − 3x

and
v(x, y) = ImF (z) = y3 + 3x2y − 3y.

This shows that the function is defined everywhere with continuously differentiable real and imaginary parts,
therefore F (z) is differentiable exactly at the points z0 = x0+iy0 ∈ C where the Cauchy-Riemann equations
are satisfied (cf. Theorem 5 of Section 2.4). The Cauchy-Riemann equations read
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3x2 + 3y2 − 3 = 3y2 + 3x2 − 3

6xy = −6xy

The first equation is an identity, i.e. it holds for all x, y whereas the second equation implies that 12xy = 0
meaning that x = 0 or y = 0. This means that the Cauchy-Riemann equations are satisfied at points
along the real and imaginary axes hence the derivative of F (z) exists along these axes.

b) Given that the derivative exists at x ∈ R and iy ∈ iR, we have

F ′(x) =
∂u

∂x
(x, 0) + i

∂v

∂x
(x, 0), F ′(iy) =

∂u

∂x
(0, y) + i

∂v

∂x
(0, y).

Based on part a), we see that

F ′(x) = [(3x2 + 3y2 − 3) + i(6xy)] |(x,y)=(x,0)= 3x2 − 3,

F ′(iy) = [(3x2 + 3y2 − 3) + i(6xy)] |(x,y)=(0,y)= 3y2 − 3.

2) Consider the complex function

g(z) =
z

z2 − z − 2

a) Find its Taylor series and the circle of convergence around 0.
b) Find its Laurent series expansion in the domain |z| > 2.
c) Determine its singularities (with type and order specified).

Solution. a) Using partial fraction decomposition we find that

g(z) =
2/3

z − 2
+

1/3

z + 1

which is suitable for applying the geometric series formula. Namely, the first term can be written as
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∣
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Page 1 of 4



and the second term can be expressed as
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∑
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(−z)n if |−z| < 1, i.e. |z| < 1.

Therefore for points inside the unit circle |z| < 1 we have the following Taylor series expansion of g(z)
around 0:
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zn.

b) The choice of domain |z| > 2 suggests a different way of expressing the terms in the partial fraction
decomposition seen in part a). Namely, we have
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Thus the Laurent series of g(z) in the domain |z| > 2 reads

g(z) =
2/3

z

∞
∑

n=0

(

2

z

)n

+
1/3
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∞
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=
∞
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3
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c) Being a rational function, the singularities of g(z) in C are poles located at the zeros of the denom-
inator (with matching orders). Therefore the singularities of g(z) are simple poles located at z = 2 and
z = −1.

3) Compute the following complex integral
z

Γ

(iz − 5z) dz

where Γ is the positively oriented contour consisting of the interval [0, 4] and the lower semicircle of radius
2 centered at 2.

Solution. The contour is the union of a line segment C1 and a semicircle C2 which can be parameterized
by the functions z1(t) = 4 − t, 0 ≤ t ≤ 4 and z2(t) = 2 + 2eit, −π ≤ t ≤ 0, respectively. Note that we
have z′1(t) = −1 and z′2(t) = 2ieit. Using the additivity of complex integrals we get

z

Γ

(iz − 5z) dz =
w

C1

(iz − 5z) dz +
w

C2

(iz − 5z) dz

=

4
w

0

[i(4− t)− 5(4− t)](−1) dt+

0
w

−π

[i(2 + 2e−it)− 5(2 + 2eit)]2ieit dt

=

4
w

0

(i− 5)(t− 4) dt+

0
w

−π

(−4)[1 + (1 + 5i)eit + 5ie2it] dt

= [(i− 5)(1
2
t2 − 4t)]40 + [(−4)(t + 1+5i

i
eit + 5

2
e2it)]0

−π

= −4π.

4) Evaluate the following improper integral

∞
w

−∞

x cos(x)

x2 − 4x+ 3
dx
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Solution. Let us consider the complex function

f(z) =
zeiz

z2 − 4z + 3
.

By Euler’s formula, it is clear that for x ∈ R we have

Re f(x) =
x cos(x)

x2 − 4x+ 3
.

The function f(z) has two simple poles at z1 = 1 and z2 = 3. Take 0 < ε < 1 and R > 3 + ε and let
ΓR,ε denote the positively oriented closed contour consisting of the union of intervals [−R, 1 − ε] ∪ [1 +
ε, 3− ε] ∪ [3 + ε, R] along the real axis and the upper semicircles C+

R (0) ∪−C+
ε (1)∪−C+

ε (3) (orientation
indicated). Note that the poles z1, z2 are in the exterior of the contour ΓR,ε and that f(z) is regular along
and inside ΓR,ε. Therefore, by Cauchy’s Integral Theorem, we have

z

ΓR,ε

f(z) dz = 0,

that is

1−ε
w

−R

f(x) dx+

3−ε
w

1+ε

f(x) dx+

R
w

3+ε

f(x) dx+
w

C+

R
(0)

f(z) dz −
w

C+
ε (1)

f(z) dz −
w

C+
ε (3)

f(z) dz = 0.

Note that we have

lim
R→∞

lim
ε→0

Re

(

1−ε
w

−R

f(x) dx+

3−ε
w

1+ε

f(x) dx+

R
w

3+ε

f(x) dx

)

=

∞
w

−∞

x cos(x)

x2 − 4x+ 3
dx,

whereas
lim
R→∞

w

C+

R
(0)

f(z) dz = 0

due to Jordan’s lemma as we have deg(z2 − 4z + 3) ≥ 1 + deg(z) for the rational part of f(z). As for the
remaining integrals, we have semicircular contours centred at simple poles. Therefore the Laurent series of
f(z) around these poles has only one term with negative z exponent, i.e. around z = 1 we have

f(z) =
Res(f, 1)

z − 1
+

∞
∑

n=0

f (n)(1)

n!
(z − 1)n

and around z = 3 we have

f(z) =
Res(f, 3)

z − 3
+

∞
∑

n=0

f (n)(3)

n!
(z − 3)n

The regular (Taylor series) parts are bounded around the poles hence their integrals tend to 0 as the radius
ε → 0. To evaluate the integrals of the singular parts we need to compute the residues. We have

Res(f, 1) = lim
z→1

(z − 1)f(z) = lim
z→1

(

zeiz

z − 3

)

=
ei

−2

and

Res(f, 3) = lim
z→1

(z − 3)f(z) = lim
z→3

(

zeiz

z − 1

)

=
3e3i

2
.

Thus parametrizing C+
ε (1) via z(t) = 1 + εeit, 0 ≤ t ≤ π we get

lim
ε→0

w

C+
ε (1)

f(z) dz = lim
ε→0

w

C+
ε (1)

ei

−2

1

z − 1
dz = lim

ε→0

π
w

0

ei

−2

1

εeit
iεeit dt = lim

ε→0

π
w

0

ei

−2
i dt = −

iπei

2
.
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In a similar way, we can parametrize C+
ε (3) via z(t) = 3 + εeit, 0 ≤ t ≤ π to obtain

lim
ε→0

w

C+
ε (3)

f(z) dz = lim
ε→0

w

C+
ε (3)

3e3i

2

1

z − 3
dz = lim

ε→0

π
w

0

3e3i

2

1

εeit
iεeit dt = lim

ε→0

π
w

0

3e3i

2
i dt =

3iπe3i

2
.

By combining our results for the contour integrals Cauchy’s Theorem takes the following concrete form

∞
w

−∞

f(x) dx+
iπei

2
−

3iπe3i

2
= 0

as R → ∞ and ε → 0. Rearranging this relation and taking the real part yields the integral in question

∞
w

−∞

x cos(x)

x2 − 4x+ 3
dx =

π

2
(sin 1 + 3 sin 3).

5) Show that the polynomial z6 + 4z2 − 1 has exactly two zeros in the unit disc |z| < 1.

Solution. For the entire functions f(z) = 4z2 − 1 and h(z) = z6 we have

|f(z)| > |4z2| − 1 = 4|z|2 − 1 = 3 > 1 = |z|6 = |z6| = |h(z)|

along the unit circle |z| = 1. (Here we used the reverse triangle inequality and the multiplicative property of
the complex modulus.) Therefore, by Rouché’s Theorem, f(z)+h(z) = z6+4z2−1 and f(z) = 4z2−1
have the same number of zeros inside the unit disc. The function f(z) = 4z2 − 1 clearly has exactly two
simple zeros at z = ±1/2 and they are both in the unit disc, therefore f(z) + h(z) = z6 + 4z2 − 1 also
has exactly two zeros satisfying |z| < 1.
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